Epigallocatechin-3-O-gallate up-regulates microRNA-let-7b expression by activating 67-kDa laminin receptor signaling in melanoma cells

نویسندگان

  • Shuhei Yamada
  • Shuntaro Tsukamoto
  • Yuhui Huang
  • Akiko Makio
  • Motofumi Kumazoe
  • Shuya Yamashita
  • Hirofumi Tachibana
چکیده

MicroRNAs (miRNAs) are non-coding RNAs involved in various biological processes by regulating their target genes. Green tea polyphenol (-)-epigallocatechin-3-O-gallate (EGCG) inhibits melanoma tumor growth by activating 67-kDa laminin receptor (67LR) signaling. To examine the effect of EGCG on miRNA expression in melanoma cells, we performed miRNA microarray analysis. We showed that EGCG up-regulated miRNA-let-7b expression through 67LR in melanoma cells. The EGCG-induced up-regulation of let-7b led to down-regulation of high mobility group A2 (HMGA2), a target gene related to tumor progression. 67LR-dependent cAMP/protein kinase A (PKA)/protein phosphatase 2A (PP2A) signaling pathway activation was involved in the up-regulation of let-7b expression induced by EGCG. These findings provide a basis for understanding the mechanism of miRNA regulation by EGCG.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TLR4 signaling inhibitory pathway induced by green tea polyphenol epigallocatechin-3-gallate through 67-kDa laminin receptor.

Epigallocatechin-3-gallate (EGCG), a major active polyphenol of green tea, has been shown to downregulate inflammatory responses in macrophages; however, the underlying mechanism has not been understood. Recently, we identified the 67-kDa laminin receptor (67LR) as a cell-surface EGCG receptor that mediates the anticancer action of EGCG at physiologically relevant concentrations (0.1-1 microM)....

متن کامل

Vitamin A Enhances Antitumor Effect of a Green Tea Polyphenol on Melanoma by Upregulating the Polyphenol Sensing Molecule 67-kDa Laminin Receptor

BACKGROUND Green tea consumption has been shown to have cancer preventive qualities. Among the constituents of green tea, (-)-Epigallocatechin-3-O-gallate (EGCG) is the most effective at inhibiting carcinogenesis. However, the concentrations of EGCG that are required to elicit the anticancer effects in a variety of cancer cell types are much higher than the peak plasma concentration that occurs...

متن کامل

Synergetic downregulation of 67 kDa laminin receptor by the green tea (Camellia sinensis) secondary plant compound epigallocatechin gallate: a new gateway in metastasis prevention?

BACKGROUND In traditional Chinese medicine, green tea is considered to have a life-prolonging effect, possibly as a result of its rich content of antioxidant tea polyphenols, and hence has the potential to prevent cancer. This study investigated the role of the major tea secondary plant compound epigallocatechin gallate (EGCG) for its inhibitory effects on the metastasis-associated 67 kDa lamin...

متن کامل

Green tea (-)-epigallocatechin gallate inhibits insulin stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway.

Insulin and (-)-epigallocatechin gallate (EGCG) have been reported to regulate fat cell mitogenesis and adipogenesis, respectively. This study investigated the pathways involved in EGCG modulation of insulin-stimulated mitogenesis in 3T3-L1 preadipocytes. EGCG inhibited insulin stimulation of preadipocyte proliferation in a dose- and time-dependent manner. EGCG also suppressed insulin-stimulate...

متن کامل

67-kDa laminin receptor increases cGMP to induce cancer-selective apoptosis.

The 67-kDa laminin receptor (67LR) is a laminin-binding protein overexpressed in various types of cancer, including bile duct carcinoma, colorectal carcinoma, cervical cancer, and breast carcinoma. 67LR plays a vital role in growth and metastasis of tumor cells and resistance to chemotherapy. Here, we show that 67LR functions as a cancer-specific death receptor. In this cell death receptor path...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016